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Meet the team

Diego Stecca
Team Leader
(El Capitan)

Oversaw project direction,
coordinated overall progress,
and facilitated
problem-solving discussions
during team meetings.

Daniel Lipszyc
Vice Team Leader

Supported Diego in managing
tasks, maintained meeting
agendas, and stepped-into
guide technical discussions

when needed.

Meynard Guillermo
Meeting Coordinator

Organized and scheduled
focused sub-team sessions
(2-3 members) to tackle
discrete milestones; this
approach maintained daily
progress and made
collaboration efficient and
enjoyable.
Summer 2025

Danilo Inestroza
Data Storyteller

Transformed our Jupyter
Notebook into a clear,
narrative-driven report by
reorganizing headings, adding
concise explanations, and
designing illustrative visuals,
making complex results
accessible to non-technical
stakeholders.

Carlos Felipe
Wall Breaker

Led investigative efforts
whenever we encountered
blockers—debugging lengthy
GridSearchCV runs,
identifying performance
bottlenecks, and sourcing
advanced technigues to
improve model accuracy.
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Goal:
Bulldozer Price Prediction

Project Objective:

° Forecast auction sale prices of used bulldozers

° Employ supervised regression models

° Generate reliable price estimates to guide
buyers & sellers

Summer 2025




{class 'pandas.core.frame.DataFrame’'>
Index: 401125 entries, 205615 to 400217
Data columns (total 53 columns):
Column Non-Null Count

Cl1S4930 - 16903

Dataset Overview

401125 non-null

SalePrice 491125 non-null
MachinelID 401125 non-null
ModelID 401125 non-null
datasource 401125 non-null
auctioneerID 380989 non-null
Blue Book for N S0 (17 RO YearMade 401125 non-null
Bulldozers dataset 401,125 MachineHoursCurrentMeter 142765 non-null
UsageBand 69639 non-null
Contains historical auction Number of Features saledate 491125 non-null datetime64[ns]
records alongside detailed fiModelDesc 491125 non-null object
e 53 fiBaseModel 491125 non-null object
fiSecondaryDesc 263934 non-null object
Source Data types fiModelSeries 56908 non-null  object

fiModelDescriptor 71919 non-null object
ProductSize 190350 non-null object
fiProductClassDesc 491125 non-null object
state 491125 non-null object
ProductGroup 491125 non-null object
ProductGroupDesc 491125 non-null object

datetime, float64, intb4, object
https://www.kaggle.com/data

sets/farhanreynaldo/blue-boo
k-for-bulldozer

Differential_Type 69411 non-null object
Steering_Controls 69369 non-null object
Summer 2025 dtypes: datetime64[ns](1), float64(2), int64(6), object(44)
memory usage: 165.3+ MB
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Dataset

Feature Relevance

Overview (cont.)

Summer 2025

1

Identification &
Source

{SalesID, MachineID,
ModellD, datasource,
auctioneerID}

These features track
each sale record, the
specific machineg, its
model family, & the
data source, showing
systematic
differences across
auction houses

2

Usage & Condition
{YearMade,
MachineHoursCurrentMeter,
UsageBand}

Capture the machine’s
age, total hours of
operation, & a binned
usage category to
model nonlinear
depreciation and wear
effects on value

3

Machine
Specifications &

Attachments
{<all other features>}

Detailing the
bulldozer’s
powertrain, chassis,
optional equipment,
& configuration
variants helps explain
how design choices &
extra attachments
affect prices

4

Prediction Target
{SalePrice}

Outcome we aim to
predict, with all other
features serving as
supporting variables




Exploratory Data Analysis (EDA) - Data Visualization
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Histogram reveals that low sale prices are most
common & steadily declines as prices rise
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Erroneously records bulldozers as early as the
year 1000 despite their Ist appearance in 1929, so
we will list all unique YearMade entries to identify
any further anomalies



EDA - Data Visualization (cont)

SalePrice

140000 -

120000 -

100000 A

80000 H

60000 A

40000 A

20000 A

0

0.0 0.5 1.0 1.5 2.0 2.5
Machine Hours le6

SalePrice vs MachineHoursCurrentMeter

Plot shows that machine usage substantially
influences sale price & reveals that the dataset is
predominantly comprised of nearly new
bulldozers
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SalePrice by Top 5 ProductSizes

Sale prices and spread grow with ProductSize:
Small/Mini are low and tight, while
Large/Large-Medium show the highest medians,
widest ranges, and outliers.
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Goal

Data Cleanin

Step 5

accurate,
complete, and
Step 4 C t :
onver consistent for
Step 3 Fillin numerical categoriesinto reliable analysis
Step 2 Converting with median
a <class ‘pandas.core.frame.DataFrame’>
Scale th ob]ect—typed Index: 401125 entries, 205615 to 400217
Cale @ 9 Data columns (total 42 columns):
features into
Step 1 . Non-Null Count
numerical values. :
D ] f Categor]es SalesID 401125 non-null
rop columns o SalePrice 401125 non-null
p MachineID 401125 non-null
that have at least Mode11D 461125 non-nu1l
850/0 nU” Va]UeS datasource 491125 non-null

auctioneerID 380989 non-null
YearMade 401125 non-null
MachineHoursCurrentMeter 142765 non-null float64
UsageBand 69639 non-null object
saledate 401125 non-null datetime64[ns]
fiModelDesc 401125 non-null object
fiBaseModel 401125 non-null object
fiSecondaryDesc 263934 non-null object
fiModelDescriptor 71919 non-null object
ProductSize 198350 non-null object
fiProductClassDesc 401125 non-null object
state 401125 non-null object
ProductGroup 401125 non-null object
ProductGroupDesc 401125 non-null object
Drive_ System 104361 non-null object

Differential_Type 69411 non-null object
Steering_Controls 69369 non-null object
dtypes: datetime64[ns](1), float64(2), int64(6), object(33)
Summer 2025 memory usage: 131.6+ MB




Models WITHOUT GridSearchCV

Linear Regression:
Normal, Lasso, Elastic Net

Forlinear regression we
included the base model as
well as one with Lasso and
one with Elastic Net
regularization.

Decision Tree

This model was chosen for its
interpretability and ability to
capture non-linear patterns. It
performed significantly better
than linear regression, as it
could model more complex
relationships in the data.
However, it also showed signs of
overfitting.

KNN

KNN was used to assess
performance based on
proximity-based
decision-making. It doesn't
make assumptions about the
data distribution and can
perform well in capturing local
patterns.

Random Forest

We chose to include this
alongside the decision tree to
contrast their results and
demonstrate how the ensemble
method performs better. The
difference isn’t massive but as
the random forest is intended to
reduce overfitting, it did so on
our data, Improving the R2 score
and decreasing error.



Score

valuation Metrics WITHOUT GridSearchCV

Model Comparison: R?, MSE & MAE

I R

Linear Regression Model
R® Score: 0.392
Mean Squared Error (MSE): 0.612

Mean Absolute Error (MAE): 0.559

Lasso
R? Score: 0.136
Mean Squared Error (MSE): 0.869

Mean Absolute Error (MAE): 0.693

Elastic Net
R2 Score: 0.180
Mean Squared Error (MSE): 0.825

Mean Absolute Error (MAE): 0.667

Decision Tree Regression Model
R2 Score: 0.826
Mean Squared Error (MSE): 0.175

Mean Absolute Error (MAE): 0.251

K-Nearest Neighbors
R? Score: 0.680
Mean Squared Error (MSE): 0.322

Mean Absolute Error (MAE): 0.354

Random Forest Regressor
R?Score: 0.909
Mean Squared Error (MSE): 0.092

Mean Absolute Error (MAE): 0.188



Evaluation Metrics WITH GridSearchCV

Rankings

Model Comparison: R?, MSE & MAE

Score

R?Score: (Higher is better)
Ist: Decision Tree (0.861)
2nd: Random Forest (0.845)
3rd: KNIN (0.724)

MSE: (Lower is better)
Ist: Decision Tree (0.140)
2nd: Random Forest (0.156)
3rd: KNN (0.277)

MAE: (Lower is better)
Ist: Decision Tree (0.230)
2nd: Random Forest (0.256)
3rd: KNN (0.321)



Actual vs Predicted Price Scatter Plot

KNearest Neighbors: Actual vs Predicted

The actual vs predicted price scatter plot
shows the model’s predicted values versus
the ground truth values.

The optimal plot would be one with its
points as close to the red line (y = x) .

The more optimal the plot is the higher its
corresponding R? score is.

Decision Tree Regression: Actual vs Predicted

Predicted Price

Actual Price

Predicted Price

Actual Price

Decision Tree (Left):

This model has the most optimal graph of
all three. Its points are all centered around
the red line without veering to one side. As
a result it has the highest R? score.

KNN (Above):

This model’s points are very spread out and
and veer below the red line. As a result it
has the lowest R? score.

Random Forest (Below):

This model actually has a much lower spread
than the plot for Decision Tree. However, it
veers significantly below the red line. This
results in a R? score that is a close second to
Decision Tree (0.845 vs 0.861).

Random Forest Regressor: Actual vs Predicted

Predicted Price

Actual Price



Residuals

Errors in Predicted Price Scatter Plot

KNearest Neighbors: Errors in Predicted Price

The errors in predicted price scatter plot
shows the residuals or the difference
between the predicted and ground truth
value.

The optimal plot would be one with its
points as close and symmetrical to the red
line (y = x).

Decision Tree Regression: Errors in Predicted Price

Predicted Price

Residuals

Predicted Price

Decision Tree (Left) & KKN (Above):

Both have similar spread in errors with the
only difference being that Decision Tree’s
errors are a bit closer to the red line.

This means they had similar errors when
predicting the price of the same test
values.

Residuals

Random Forest (Below):

This had the lowest spread and most
symmetrical to the red line. However, it
becomes skewed on larger price residuals
as seen before on the previous plots.

andom Forest Regressor: Errors in Predicted Price

Predicted Price



Distribution of Errors Histogram Plot

The distribution of errors histogram plot
shows the frequency and spread of
prediction errors.

The optimal plot is one that closely
resembles the normal distribution
centered at zero.

Decision Tree Regression: Distribution of Errors

KNearest Neighbors: Distribution of Errors
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Decision Tree (Left):

Has the distribution closest to a normal
distribution and centered at zero.

KNN (Above):

Also has a distribution that is pretty close
to the normal distribution. However, it is
slightly skewed to the left.
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Random Tree (Below):

Distribution least like the normal
distribution because it is heavily skewed to
the left.

Random Forest Regressor: Distribution of Errors

2500 A

2000 A

1500 A

Frequency

1000 A

500 4

Residual



Cl1S4930 - 16903

Feature Importance

YearMade
ProductSize
saledate
fiBaseModel
fiSecondaryDesc
SalesID
fiProductClassDesc
ModellD
fiModelDesc
Tire_Size
MachinelD

state

Coupler

Enclosure
auctioneeriD
fiModelDescriptor
MachineHoursCurrentMeter
Ripper

Blade_Type
Transmission

Random Forest Regressor Feature Importances

0.10 0.15
Importance

YearMade
ProductSize
saledate
fiBaseModel
fiSecondaryDesc
fiProductClassDesc
SalesID

ModellD
fiModelDesc
Tire_Size
MachinelD

Coupler

state

Enclosure
fiModelDescriptor
auctioneeriD
MachineHoursCurrentMeter
Ripper
Transmission
Travel_Controls

Decision Tree Regressor Feature Importances

0.15
Importance

Regular Random Forest & Decision Tree

The regular random forest and decision tree did best and second best
respectively. The features that were the most important to training the models
were the same except a few lower ranked features. The most important
features between the two being Year Made, Product Size, and Sale Date.

Summer 2025

Random Forest Regressor (GridSearchCV) Feature Importances

YearMade
ProductSize
fiSecondaryDesc
Enclosure
saledate

ModellD
fiModelDesc
fiProductClassDesc
fiBaseModel
fiModelDescriptor
MachinelD
SalesID

Tire_Size
ProductGroupDesc
Hydraulics

Ripper

state

Coupler
ProductGroup
auctioneeriD

0.000 0.025 0.050 0075 0100 0125 0150 0.175
Importance

Random Forest
(GridSearchCV)

Coming in third best, the
Random Forest with
GridSearchCV differed
slightly with Year Made,
Product Size, and Secondary
Description (Sub-Model)
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Model Performance Summary (Ranked by R?Score)

R-Squared MSE MAE Model Comparison: R?, MSE & MAE

0.909 0.092 0.188
0.861 0.140 0.230
0.845 0.156 0.257
0.826 0.175 0.251
0.724 0.277 0.321
0.680 0.322 0.354
0.392 0.612 0.559
0.180 0.825 0.667
0.136 0.869 0.693

Summer 2025
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AnalySis ‘ (CYAELCEWENS

Summer 2025

1

Random Forest
Regressor Top
Performer

Random Forest
(default) achieved the
highest R? and lowest
errors, indicating
strong predictive
power

2

Hyperparameter Tuning
Boosts Decision Tree &
KNN Performance
GridSearchCV

noticeably improved
Decision Tree and
KNN results,
demonstrating the
value of
hyperparameter
tuning

3

Linear Models
Underperform on
Complex Data

Linear models (Lasso,

Elastic Net)
underperformed on
this dataset,
suggesting limited
linear signal or need
for stronger
regularization
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Reflection

Opportunities for Further Improvement

Tree-Based Tuning

Use
RandomizedSearchCV
or Bayesian
optimization to expand
and optimize tree
hyperparameters like
max_depth,
min_samples_split, and
splitting criteria

Summer 2025

2

Random Forest
Expansion

Broaden n_estimators,
max_features, and
bootstrap sampling,
using out-of-bag
scores for validation

3

KNN Feature
Selection

Apply wrapper
methods after filter
steps to remove
irrelevant features and
sharpen distance
metrics

4

Advanced
Ensembles

Beyond Random
Forests, investigating
gradient-boosted trees
or stacking ensembles
could capture
complementary
strengths of multiple
base learners

Neural Networks

Experimenting with
deep learning models
might uncover
nonlinear patterns that
tree ensembles miss
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Reflection

Project Limitations & Challenges

Time and Compute Constraints:

Conducting an exhaustive grid search for the Random Forest over
a wide hyperparameter space required over 12 hours of
runtime—highlighting the balance between exploration depth and
available computational resources.







