
pip install openpyxl

/opt/anaconda3/lib/python3.12/pty.py:95: DeprecationWarning: This
process (pid=16869) is multi-threaded, use of forkpty() may lead to
deadlocks in the child.
 pid, fd = os.forkpty()

Requirement already satisfied: openpyxl in
/opt/anaconda3/lib/python3.12/site-packages (3.1.2)
Requirement already satisfied: et-xmlfile in
/opt/anaconda3/lib/python3.12/site-packages (from openpyxl) (1.1.0)
Note: you may need to restart the kernel to use updated packages.

import pandas as pd

import pandas as pd
Load the dataset
file_path = "online_retail_II 2.xlsx" # Replace
data = pd.read_excel(file_path, sheet_name="Year 2010-2011")
Display the first few rows
data.head()

/opt/anaconda3/lib/python3.12/site-packages/openpyxl/packaging/
core.py:99: DeprecationWarning: datetime.datetime.utcnow() is
deprecated and scheduled for removal in a future version. Use
timezone-aware objects to represent datetimes in UTC:
datetime.datetime.now(datetime.UTC).
 now = datetime.datetime.utcnow()
/opt/anaconda3/lib/python3.12/site-packages/openpyxl/packaging/core.py
:99: DeprecationWarning: datetime.datetime.utcnow() is deprecated and
scheduled for removal in a future version. Use timezone-aware objects
to represent datetimes in UTC: datetime.datetime.now(datetime.UTC).
 now = datetime.datetime.utcnow()

 Invoice StockCode Description Quantity \
0 536365 85123A WHITE HANGING HEART T-LIGHT HOLDER 6
1 536365 71053 WHITE METAL LANTERN 6
2 536365 84406B CREAM CUPID HEARTS COAT HANGER 8
3 536365 84029G KNITTED UNION FLAG HOT WATER BOTTLE 6
4 536365 84029E RED WOOLLY HOTTIE WHITE HEART. 6

 InvoiceDate Price Customer ID Country
0 2010-12-01 08:26:00 2.55 17850.0 United Kingdom
1 2010-12-01 08:26:00 3.39 17850.0 United Kingdom
2 2010-12-01 08:26:00 2.75 17850.0 United Kingdom
3 2010-12-01 08:26:00 3.39 17850.0 United Kingdom
4 2010-12-01 08:26:00 3.39 17850.0 United Kingdom

Check the shape and data types
print(f"Dataset shape: {data.shape}")
print(data.info())

Check for missing values
print(data.isnull().sum())
Summary statistics
data.describe()

Dataset shape: (541910, 8)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541910 entries, 0 to 541909
Data columns (total 8 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Invoice 541910 non-null object
 1 StockCode 541910 non-null object
 2 Description 540456 non-null object
 3 Quantity 541910 non-null int64
 4 InvoiceDate 541910 non-null datetime64[ns]
 5 Price 541910 non-null float64
 6 Customer ID 406830 non-null float64
 7 Country 541910 non-null object
dtypes: datetime64[ns](1), float64(2), int64(1), object(4)
memory usage: 33.1+ MB
None
Invoice 0
StockCode 0
Description 1454
Quantity 0
InvoiceDate 0
Price 0
Customer ID 135080
Country 0
dtype: int64

 Quantity InvoiceDate Price \
count 541910.000000 541910 541910.000000
mean 9.552234 2011-07-04 13:35:22.342307584 4.611138
min -80995.000000 2010-12-01 08:26:00 -11062.060000
25% 1.000000 2011-03-28 11:34:00 1.250000
50% 3.000000 2011-07-19 17:17:00 2.080000
75% 10.000000 2011-10-19 11:27:00 4.130000
max 80995.000000 2011-12-09 12:50:00 38970.000000
std 218.080957 NaN 96.759765

 Customer ID
count 406830.000000
mean 15287.684160
min 12346.000000
25% 13953.000000
50% 15152.000000
75% 16791.000000

max 18287.000000
std 1713.603074

Drop rows with missing CustomerID
data = data.dropna(subset=['Customer ID'])
Fill missing Description with a placeholder
data['Description'] = data['Description'].fillna('Unknown')
Verify missing values are handled
print(data.isnull().sum())

Invoice 0
StockCode 0
Description 0
Quantity 0
InvoiceDate 0
Price 0
Customer ID 0
Country 0
dtype: int64

Remove rows with negative Quantity or Price
#data = data[(data['Quantity'] > 0) & (data['Price'] > 0)]
Verify the changes
#print(data[['Quantity', 'Price']].describe())

Remove duplicate rows
data = data.drop_duplicates()
Confirm there are no duplicates left
duplicates_count = data.duplicated().sum()
print(f"Number of duplicate rows remaining: {duplicates_count}")
Display the dataset shape after removing duplicates
print(f"Dataset shape after removing duplicates: {data.shape}")

Number of duplicate rows remaining: 0
Dataset shape after removing duplicates: (401605, 8)

Ensure 'InvoiceDate' is in datetime format
data['InvoiceDate'] = pd.to_datetime(data['InvoiceDate'])
Add 'Day of Week' feature
data['DayOfWeek'] = data['InvoiceDate'].dt.day_name()
Add 'Hour' feature to help categorize time of day
data['Hour'] = data['InvoiceDate'].dt.hour
Categorize 'Hour' into 'Time of Day'
def categorize_time(hour):
 if 5 <= hour < 12:
 return 'Morning'
 elif 12 <= hour < 17:
 return 'Afternoon'
 elif 17 <= hour < 21:
 return 'Evening'
 else:

 return 'Night'
data['TimeOfDay'] = data['Hour'].apply(categorize_time)
Drop the temporary 'Hour' column
data.drop(columns=['Hour'], inplace=True)
Verify the new features
print(data[['InvoiceDate', 'DayOfWeek', 'TimeOfDay']].head())

 InvoiceDate DayOfWeek TimeOfDay
0 2010-12-01 08:26:00 Wednesday Morning
1 2010-12-01 08:26:00 Wednesday Morning
2 2010-12-01 08:26:00 Wednesday Morning
3 2010-12-01 08:26:00 Wednesday Morning
4 2010-12-01 08:26:00 Wednesday Morning

import seaborn as sns
import matplotlib.pyplot as plt
Transactions by Day of Week
plt.figure(figsize=(10, 6))
sns.countplot(x='DayOfWeek', data=data, order=['Monday', 'Tuesday',
'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'])
plt.title('Number of Transactions by Day of the Week', fontsize=14)
plt.xlabel('Day of the Week', fontsize=12)
plt.ylabel('Number of Transactions', fontsize=12)
plt.xticks(rotation=45)
plt.show()

Transactions by Time of Day
plt.figure(figsize=(8, 6))
sns.countplot(x='TimeOfDay', data=data, order=['Morning', 'Afternoon',
'Evening', 'Night'])
plt.title('Number of Transactions by Time of Day', fontsize=14)
plt.xlabel('Time of Day', fontsize=12)
plt.ylabel('Number of Transactions', fontsize=12)
plt.show()

Create a Revenue column
data['Revenue'] = data['Quantity'] * data['Price']
Revenue by Day of Week
revenue_by_day = data.groupby('DayOfWeek')
['Revenue'].sum().reindex(['Monday', 'Tuesday', 'Wednesday',
'Thursday', 'Friday', 'Saturday', 'Sunday'])
plt.figure(figsize=(10, 6))
sns.barplot(x=revenue_by_day.index, y=revenue_by_day.values)
plt.title('Total Revenue by Day of the Week', fontsize=14)
plt.xlabel('Day of the Week', fontsize=12)
plt.ylabel('Revenue', fontsize=12)
plt.xticks(rotation=45)
plt.show()

Revenue by Time of Day
revenue_by_time = data.groupby('TimeOfDay')
['Revenue'].sum().reindex(['Morning', 'Afternoon', 'Evening',
'Night'])
plt.figure(figsize=(8, 6))
sns.barplot(x=revenue_by_time.index, y=revenue_by_time.values)
plt.title('Total Revenue by Time of Day', fontsize=14)
plt.xlabel('Time of Day', fontsize=12)
plt.ylabel('Revenue', fontsize=12)
plt.show()

Calculate the correlation matrix
correlation_matrix = data[['Quantity', 'Price', 'Revenue']].corr()

Display the correlation matrix
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm',
fmt='.2f', square=True, cbar_kws={"shrink": .8})
plt.title('Correlation Matrix', fontsize=14)
plt.show()

pip install scikit-learn

/opt/anaconda3/lib/python3.12/pty.py:95: DeprecationWarning: This
process (pid=16869) is multi-threaded, use of forkpty() may lead to
deadlocks in the child.
 pid, fd = os.forkpty()

Requirement already satisfied: scikit-learn in
/opt/anaconda3/lib/python3.12/site-packages (1.4.2)
Requirement already satisfied: numpy>=1.19.5 in
/opt/anaconda3/lib/python3.12/site-packages (from scikit-learn)
(1.26.4)
Requirement already satisfied: scipy>=1.6.0 in
/opt/anaconda3/lib/python3.12/site-packages (from scikit-learn)
(1.13.1)
Requirement already satisfied: joblib>=1.2.0 in
/opt/anaconda3/lib/python3.12/site-packages (from scikit-learn)
(1.4.2)
Requirement already satisfied: threadpoolctl>=2.0.0 in

/opt/anaconda3/lib/python3.12/site-packages (from scikit-learn)
(2.2.0)
Note: you may need to restart the kernel to use updated packages.

from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
import numpy as np

Aggregate data at the customer level
customer_data = data.groupby('Customer ID').agg({
 'Revenue': 'sum',
 'InvoiceDate': 'max',
 'Invoice': 'count',
 'Quantity': 'sum'
}).rename(columns={
 'Revenue': 'TotalRevenue',
 'InvoiceDate': 'LastPurchase',
 'Invoice': 'TransactionCount',
 'Quantity': 'TotalQuantity'
})

Calculate recency (days since last purchase)
latest_date = data['InvoiceDate'].max() # Define the latest date
customer_data['Recency'] = (latest_date -
customer_data['LastPurchase']).dt.days

Drop LastPurchase column after calculating recency
customer_data.drop(columns=['LastPurchase'], inplace=True)

Scale the features
scaler = StandardScaler()
scaled_features = scaler.fit_transform(customer_data)

Display the first few rows
print(customer_data.head())

 TotalRevenue TransactionCount TotalQuantity Recency
Customer ID
12346.0 0.00 2 0 325
12347.0 4310.00 182 2458 1
12348.0 1797.24 31 2341 74
12349.0 1757.55 73 631 18
12350.0 334.40 17 197 309

from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
import pandas as pd

Apply K-Means clustering
kmeans = KMeans(n_clusters=4, random_state=42)
customer_data['Cluster'] = kmeans.fit_predict(scaled_features)

Display cluster centroids
centroids = pd.DataFrame(kmeans.cluster_centers_,
columns=customer_data.columns[:-1])
print("Cluster Centroids:\n", centroids)

Display the first few rows of the data with cluster labels
print(customer_data.head())

Cluster Centroids:
 TotalRevenue TransactionCount TotalQuantity Recency
0 -0.079562 -0.075751 -0.079459 -0.484738
1 -0.174407 -0.282366 -0.184532 1.563451
2 13.613960 11.055923 13.333843 -0.864721
3 1.024108 1.582632 1.081760 -0.775156
 TotalRevenue TransactionCount TotalQuantity Recency
Cluster
Customer ID

12346.0 0.00 2 0 325
1
12347.0 4310.00 182 2458 1
0
12348.0 1797.24 31 2341 74
0
12349.0 1757.55 73 631 18
0
12350.0 334.40 17 197 309
1

import matplotlib.pyplot as plt
import seaborn as sns

Visualize clusters based on TotalRevenue and Recency
plt.figure(figsize=(10, 6))
sns.scatterplot(
 x=customer_data['Recency'],
 y=customer_data['TotalRevenue'],
 hue=customer_data['Cluster'],
 palette='viridis',
 s=100,
 alpha=0.8
)
plt.title('Customer Clusters Based on Recency and TotalRevenue',
fontsize=14)
plt.xlabel('Recency (days since last purchase)', fontsize=12)
plt.ylabel('Total Revenue', fontsize=12)
plt.legend(title='Cluster', fontsize=10)
plt.show()

print(customer_data.columns)

Index(['TotalRevenue', 'TransactionCount', 'TotalQuantity', 'Recency',
 'Cluster'],
 dtype='object')

Assuming 'customer_data' already contains the relevant aggregated
data
Create a 'Purchased' column based on Total Quantity
customer_data['Purchased'] = (customer_data['TotalQuantity'] >
0).astype(int) # 1 if purchased, 0 if not

Merge customer_data with session-level data
merged_data = data.merge(customer_data, how='left', on='Customer ID')
Features (X) and Target (y)
X = merged_data[['TotalRevenue', 'Recency', 'TotalQuantity',
'TransactionCount']]
Use Purchased_y instead of Purchased
y = merged_data['Purchased'] # Using the 'Purchased' column from
customer_data

Train-test split
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

Display train-test split shapes
print("Training set shape:", X_train.shape)
print("Testing set shape:", X_test.shape)

Training set shape: (321284, 4)
Testing set shape: (80321, 4)

purchase_likelihood = customer_data.groupby('Cluster')
['Purchased'].mean()

Print purchase likelihood for each cluster
print("Purchase Likelihood by Cluster:")
print(purchase_likelihood)

Purchase Likelihood by Cluster:
Cluster
0 0.994740
1 0.965485
2 1.000000
3 1.000000
Name: Purchased, dtype: float64

Define marketing strategies for each cluster
marketing_strategies = {
 0: {
 "message": "We miss you! Enjoy 30% off your next purchase with
code WELCOME30.",
 "email_subject": "Come back for an exclusive discount!"
 },
 1: {
 "message": "Refer a friend and get 20% off your next order!",
 "email_subject": "Share the love with friends!"
 },
 2: {
 "message": "Thank you for being a loyal customer! Enjoy 10%
off your next order.",
 "email_subject": "Exclusive offers for our top customers!"
 },
 3: {
 "message": "We value your feedback! Help us improve and
receive a special offer.",
 "email_subject": "Your opinion matters to us!"
 }
}

Function to assign marketing strategy based on cluster
def assign_marketing_strategy(row):
 cluster = row['Cluster']

 return marketing_strategies.get(cluster)

Apply the function to the customer data
customer_data['MarketingMessage'] =
customer_data.apply(assign_marketing_strategy, axis=1)

Display the first few rows with assigned marketing messages
print(customer_data[['Cluster', 'MarketingMessage']].head())

 Cluster
MarketingMessage
Customer ID

12346.0 1 {'message': 'Refer a friend and get 20% off
yo...
12347.0 0 {'message': 'We miss you! Enjoy 30% off your
n...
12348.0 0 {'message': 'We miss you! Enjoy 30% off your
n...
12349.0 0 {'message': 'We miss you! Enjoy 30% off your
n...
12350.0 1 {'message': 'Refer a friend and get 20% off
yo...

print(merged_data.columns)

Index(['Invoice', 'StockCode', 'Description', 'Quantity',
'InvoiceDate',
 'Price', 'Customer ID', 'Country', 'DayOfWeek', 'TimeOfDay',
'Revenue',
 'TotalRevenue', 'TransactionCount', 'TotalQuantity', 'Recency',
 'Cluster', 'Purchased'],
 dtype='object')

import pandas as pd
Use the 'InvoiceDate' column to create the 'PurchaseHour' column
if 'InvoiceDate' in merged_data.columns:
 merged_data['PurchaseHour'] =
pd.to_datetime(merged_data['InvoiceDate']).dt.hour
else:
 raise KeyError("The 'InvoiceDate' column does not exist in the
merged data.")

Continue with the analysis
engagement = merged_data.groupby(['Cluster',
'PurchaseHour']).size().reset_index(name='EngagementCount')

Identify peak engagement hours for each cluster
peak_engagement = engagement.loc[engagement.groupby('Cluster')
['EngagementCount'].idxmax()]

Display peak engagement hours for each cluster
print("Peak Engagement Hours by Cluster:")
print(peak_engagement)

Peak Engagement Hours by Cluster:
 Cluster PurchaseHour EngagementCount
6 0 12 40054
20 1 12 5064
35 2 12 5755
50 3 12 21341

import matplotlib.pyplot as plt
import seaborn as sns

Set the aesthetic style of the plots
sns.set(style='whitegrid')

Create a bar plot for engagement counts by Cluster and PurchaseHour
plt.figure(figsize=(12, 6))
sns.barplot(data=engagement, x='PurchaseHour', y='EngagementCount',
hue='Cluster', palette='viridis')

Customize the plot
plt.title('Engagement Count by Purchase Hour and Cluster',
fontsize=16)
plt.xlabel('Purchase Hour', fontsize=14)
plt.ylabel('Engagement Count', fontsize=14)
plt.xticks(rotation=0) # Rotate x-axis labels if needed
plt.legend(title='Cluster', bbox_to_anchor=(1.05, 1), loc='upper
left')
plt.tight_layout()

Show the plot
plt.show()

Histograms for feature distributions
plt.figure(figsize=(15, 10))

plt.subplot(2, 2, 1)
sns.histplot(customer_data['TotalRevenue'], bins=30, kde=True)
plt.title('Distribution of Total Revenue')

plt.subplot(2, 2, 2)
sns.histplot(customer_data['Recency'], bins=30, kde=True)
plt.title('Distribution of Recency')

plt.subplot(2, 2, 3)
sns.boxplot(x='Cluster', y='TotalRevenue', data=customer_data)
plt.title('Total Revenue by Cluster')

plt.subplot(2, 2, 4)
sns.boxplot(x='Cluster', y='TransactionCount', data=customer_data)
plt.title('Transaction Count by Cluster')

plt.tight_layout()
plt.show()

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt

Initialize the model
model = RandomForestClassifier(random_state=42)

Fit the model on the training data
model.fit(X_train, y_train)

Make predictions on the test set
y_pred = model.predict(X_test)

Print the classification report
print(classification_report(y_test, y_pred))

Plot confusion matrix
conf_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
xticklabels=['No Purchase', 'Purchase'], yticklabels=['No Purchase',
'Purchase'])
plt.ylabel('Actual')
plt.xlabel('Predicted')

plt.title('Confusion Matrix')
plt.show()

 precision recall f1-score support

 0 1.00 1.00 1.00 126
 1 1.00 1.00 1.00 80195

 accuracy 1.00 80321
 macro avg 1.00 1.00 1.00 80321
weighted avg 1.00 1.00 1.00 80321

Create a new column for total spend
merged_data['TotalSpend'] = merged_data['Quantity'] *
merged_data['Price']

Count unique products viewed by each customer
product_views = merged_data.groupby('Customer ID')
['StockCode'].nunique().reset_index()
product_views.columns = ['Customer ID', 'Stockcode']

Count previous purchases

purchase_counts = merged_data.groupby('Customer ID')
['Invoice'].count().reset_index()
purchase_counts.columns = ['Customer ID', 'PreviousPurchases'] #
Aggregate customer data
customer_data = merged_data.groupby('Customer ID').agg({
 'Invoice': 'count', # Number of purchases
 'TotalSpend': 'sum', # Total spending
 'Country': 'first' # Assuming customers might be in one
country
}).reset_index()# Merge additional features into customer data
customer_data = customer_data.merge(product_views, on='Customer ID',
how='left')
customer_data = customer_data.merge(purchase_counts, on='Customer ID',
how='left')# Create a target variable: 1 if a purchase was made, 0
otherwise
customer_data['MadePurchase'] = customer_data['Invoice'].apply(lambda
x: 1 if x > 0 else 0)

Preparing the data for modeling
X = customer_data.drop(columns=['Customer ID', 'MadePurchase',
'Country', 'Invoice'])
y = customer_data['MadePurchase']

Split into training and testing sets
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)

Train a classification model
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report

Initialize and fit the classifier
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)

Make predictions
y_pred = model.predict(X_test)

Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
print(classification_report(y_test, y_pred))

Accuracy: 1.00
 precision recall f1-score support

 1 1.00 1.00 1.00 875

 accuracy 1.00 875
 macro avg 1.00 1.00 1.00 875
weighted avg 1.00 1.00 1.00 875

from sklearn.model_selection import cross_val_score

cv_scores = cross_val_score(model, X, y, cv=5) # 5-fold cross-
validation
print(f"Cross-Validation Scores: {cv_scores}")
print(f"Mean CV Score: {cv_scores.mean():.2f}")

Cross-Validation Scores: [1. 1. 1. 1. 1.]
Mean CV Score: 1.00

print(customer_data['MadePurchase'].value_counts())

MadePurchase
1 4372
Name: count, dtype: int64

import matplotlib.pyplot as plt

Get the value counts
class_counts = customer_data['MadePurchase'].value_counts()

Plot the class distribution
plt.figure(figsize=(8, 5))
class_counts.plot(kind='bar', color=['lightblue', 'salmon'])
plt.title('Class Distribution of MadePurchase')
plt.xlabel('Made Purchase (1 = Yes, 0 = No)')
plt.ylabel('Count')
plt.xticks(rotation=0)
plt.grid(axis='y')
plt.show()

Sort the data by Customer ID and InvoiceDate
merged_data = merged_data.sort_values(by=['Customer ID',
'InvoiceDate'])

Calculate browsing duration between transactions
merged_data['BrowsingTime'] = merged_data.groupby('Customer ID')
['InvoiceDate'].diff().dt.total_seconds()

Replace NaN browsing time (first purchase) with a default value
(e.g., 0)
merged_data['BrowsingTime'] = merged_data['BrowsingTime'].fillna(0)

Average browsing time per item (StockCode)
item_browsing = merged_data.groupby('StockCode').agg({
 'BrowsingTime': 'mean',
 'Price': 'mean'
}).reset_index()

Visualize the relationship
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(10, 6))
sns.scatterplot(data=item_browsing, x='BrowsingTime', y='Price')
plt.title('Relationship Between Browsing Time and Item Price')

plt.xlabel('Average Browsing Time (seconds)')
plt.ylabel('Average Price')
plt.grid(True)
plt.show()

Total browsing time and average price per customer
customer_browsing = merged_data.groupby('Customer ID').agg({
 'BrowsingTime': 'sum',
 'Price': 'mean'
}).reset_index()

Visualize the relationship
plt.figure(figsize=(10, 6))
sns.scatterplot(data=customer_browsing, x='BrowsingTime', y='Price')
plt.title('Relationship Between Browsing Time and Average Item Price
(Per Customer)')
plt.xlabel('Total Browsing Time (seconds)')
plt.ylabel('Average Price')
plt.grid(True)
plt.show()

Aggregate browsing time by customer
customer_browsing_time = merged_data.groupby('Customer ID')
['BrowsingTime'].sum().reset_index()
customer_browsing_time.columns = ['Customer ID', 'TotalBrowsingTime']

Merge with customer data
customer_data = customer_data.merge(customer_browsing_time,
on='Customer ID', how='left')

Verify the updated customer_data
print(customer_data.head())

 Customer ID Invoice TotalSpend Country Stockcode \
0 12346.0 2 0.00 United Kingdom 1
1 12347.0 182 4310.00 Iceland 103
2 12348.0 31 1797.24 Finland 22
3 12349.0 73 1757.55 Italy 73
4 12350.0 17 334.40 Norway 17

 PreviousPurchases MadePurchase TotalBrowsingTime
0 2 1 960.0
1 182 1 31539300.0
2 31 1 24429840.0
3 73 1 0.0
4 17 1 0.0

Add a feature for average price per customer
average_price = merged_data.groupby('Customer ID')
['Price'].mean().reset_index()
average_price.columns = ['Customer ID', 'AveragePrice']
customer_data = customer_data.merge(average_price, on='Customer ID',
how='left')

Prepare data for modeling
X = customer_data.drop(columns=['Customer ID', 'MadePurchase',
'Country', 'Invoice'])
y = customer_data['MadePurchase']

Train/test split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=42)

Train a classification model
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)

Evaluate the model
from sklearn.metrics import classification_report
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))

 precision recall f1-score support

 1 1.00 1.00 1.00 1312

 accuracy 1.00 1312
 macro avg 1.00 1.00 1.00 1312
weighted avg 1.00 1.00 1.00 1312

def categorize_browsing_time(time):
 if time < 300: # Short browsing (< 5 minutes)
 return 'Short'
 elif time <= 900: # Medium browsing (5–15 minutes)
 return 'Medium'
 else: # Long browsing (> 15 minutes)
 return 'Long'

merged_data['BrowsingCategory'] =
merged_data['BrowsingTime'].apply(categorize_browsing_time)

Analyze the number of transactions per browsing category
browsing_counts = merged_data['BrowsingCategory'].value_counts()
print(browsing_counts)

BrowsingCategory
Short 385345
Long 15789
Medium 471
Name: count, dtype: int64

avg_price_by_category = merged_data.groupby('BrowsingCategory')
['Price'].mean().reset_index()
print(avg_price_by_category)

 BrowsingCategory Price
0 Long 8.725475
1 Medium 25.598301
2 Short 3.231890

merged_data['TotalSpend'] = merged_data['Quantity'] *
merged_data['Price']
revenue_by_category = merged_data.groupby('BrowsingCategory')
['TotalSpend'].sum().reset_index()
print(revenue_by_category)

 BrowsingCategory TotalSpend
0 Long 651520.890
1 Medium -102223.000
2 Short 7729239.534

def generate_offer(category):
 if category == 'Short':
 return 'Free Shipping'
 elif category == 'Medium':
 return '10% Discount'
 else: # Long
 return 'Personalized Recommendations'

merged_data['DynamicOffer'] =
merged_data['BrowsingCategory'].apply(generate_offer)

Validate the offer distribution
offer_distribution = merged_data['DynamicOffer'].value_counts()
print(offer_distribution)

DynamicOffer
Free Shipping 385345
Personalized Recommendations 15789
10% Discount 471
Name: count, dtype: int64

Extract the date (day only) from InvoiceDate
merged_data['Day'] = merged_data['InvoiceDate'].dt.date# Group by
Customer ID and Day
customer_daily_data = merged_data.groupby(['Customer ID',

'Day']).agg({
 'Invoice': 'count', # Number of transactions in a day
 'BrowsingTime': 'sum' # Total browsing time in a day
(seconds)
}).reset_index()

Rename columns for clarity
customer_daily_data.rename(columns={
 'Invoice': 'TransactionsPerDay',
 'BrowsingTime': 'TotalBrowsingTime'
}, inplace=True)

Merge daily customer data back into the original dataset
merged_data = merged_data.merge(customer_daily_data, on=['Customer
ID', 'Day'], how='left')

import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(8, 6))
sns.scatterplot(
 x='TotalBrowsingTime',
 y='TransactionsPerDay',
 data=customer_daily_data,
 alpha=0.6
)
plt.title('Relationship Between Browsing Time and Daily Transactions')
plt.xlabel('Total Browsing Time (seconds)')
plt.ylabel('Transactions Per Day')
plt.show()

correlation =
customer_daily_data['TotalBrowsingTime'].corr(customer_daily_data['Tra
nsactionsPerDay'])
print(f"Correlation: {correlation}")

Correlation: 0.07562107407483008

Create a binary target: 1 if more than 3 transactions, else 0
customer_daily_data['HighTransaction'] =
customer_daily_data['TransactionsPerDay'].apply(lambda x: 1 if x > 3
else 0)

X = customer_daily_data[['TotalBrowsingTime']] # Feature
y = customer_daily_data['HighTransaction'] # Target

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)

from sklearn.ensemble import RandomForestClassifier

Initialize and train the model
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)

Predictions
y_pred = model.predict(X_test)

from sklearn.metrics import classification_report, accuracy_score

print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
print(classification_report(y_test, y_pred))

Accuracy: 0.7349740932642487
 precision recall f1-score support

 0 0.30 0.25 0.27 770
 1 0.82 0.86 0.84 3090

 accuracy 0.73 3860
 macro avg 0.56 0.55 0.55 3860
weighted avg 0.72 0.73 0.73 3860

def determine_action(browsing_time):
 if browsing_time <= 300: # 5 minutes in seconds
 return "No action"
 elif 301 <= browsing_time <= 600: # 5-10 minutes
 return "Offer personalized recommendations"
 elif 601 <= browsing_time <= 900: # 10-15 minutes
 return "Offer 10% discount"
 else: # 15 minutes and above
 return "Offer free shipping"

import pandas as pd

Sample merged_data DataFrame

Create a new column for Total Sales per transaction
merged_data['TotalSales'] = merged_data['Quantity'] *
merged_data['Price']

Ensure BrowsingTime is in datetime format if not already
merged_data['BrowsingTime'] =
pd.to_datetime(merged_data['BrowsingTime'])

merged_data['BrowsingDate'] = merged_data['BrowsingTime'].dt.date

Aggregate data to get total sales per customer per day
sales_data = merged_data.groupby(['Customer ID',
'BrowsingDate']).agg({
 'TotalSales': 'sum', # Total sales per customer per day
 'TotalQuantity': 'sum', # Total quantity per customer
per day
 'TotalSales': 'sum', # Total sales per transaction
 'BrowsingTime': 'count' # Count of transactions
}).reset_index()

Rename columns for clarity
sales_data.columns = ['Customer ID', 'BrowsingDate', 'TotalSales',
'TotalQuantity', 'TransactionCount']

Display the first few rows of the aggregated data
print(sales_data.head())

 Customer ID BrowsingDate TotalSales TotalQuantity
TransactionCount
0 12346.0 1970-01-01 0.00 0
2
1 12347.0 1970-01-01 4310.00 447356
182
2 12348.0 1970-01-01 1797.24 72571
31
3 12349.0 1970-01-01 1757.55 46063
73
4 12350.0 1970-01-01 334.40 3349
17

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
X = sales_data[['TotalQuantity', 'Customer ID']] # Add other features
as necessary
y = sales_data['TotalSales']

Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)

Create a Linear Regression model
model = LinearRegression()

Train the model
model.fit(X_train, y_train)

Make predictions
y_pred = model.predict(X_test)

Evaluate the model
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')

predictions_df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
print(predictions_df.head())

Mean Squared Error: 53130896.37934003
 Actual Predicted
2014 893.66 1572.508790
457 409.90 1602.404006
478 108.07 1598.747793
438 496.06 1610.289333
3728 748.94 1530.209482

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

Create a Linear Regression model
model = LinearRegression()

Train the model
model.fit(X_train, y_train)

Make predictions
y_pred = model.predict(X_test)

Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error: {mse}')
print(f'R² Score: {r2}')

Mean Squared Error: 53130896.37934003
R² Score: 0.24238147425682788

merged_data = pd.DataFrame(data)

Convert 'InvoiceDate' to datetime format
merged_data['InvoiceDate'] =
pd.to_datetime(merged_data['InvoiceDate'])

Extract month, day of the week, and date
merged_data['Month'] = merged_data['InvoiceDate'].dt.to_period('M')
merged_data['DayOfWeek'] = merged_data['InvoiceDate'].dt.day_name() #
Gets the day of the week
merged_data['Date'] = merged_data['InvoiceDate'].dt.date

Aggregate quantity data by month
monthly_quantity = merged_data.groupby('Month').agg({'Quantity':
'sum'}).reset_index()
print("Monthly Quantity Sold:")
print(monthly_quantity)

Identify months with zero or low quantities sold
low_quantity_months = monthly_quantity[monthly_quantity['Quantity'] ==
0]
print("\nMonths with Zero Quantity Sold:")
print(low_quantity_months)

Aggregate quantity data by weekday
weekly_quantity = merged_data.groupby('DayOfWeek').agg({'Quantity':
'sum'}).reindex([
 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
'Saturday', 'Sunday'
]).reset_index()
print("\nWeekly Quantity Sold:")
print(weekly_quantity)

Identify weekdays with zero or low quantities sold
low_quantity_weekdays = weekly_quantity[weekly_quantity['Quantity'] ==
0]
print("\nWeekdays with Zero Quantity Sold:")
print(low_quantity_weekdays)

Aggregate quantity data by date
daily_quantity = merged_data.groupby('Date').agg({'Quantity':
'sum'}).reset_index()
print("\nDaily Quantity Sold:")
print(daily_quantity)

Identify days with zero or low quantities sold
low_quantity_days = daily_quantity[daily_quantity['Quantity'] == 0]
print("\nDays with Zero Quantity Sold:")
print(low_quantity_days)

Monthly Quantity Sold:
 Month Quantity
0 2010-12 295177
1 2011-01 268755
2 2011-02 262243
3 2011-03 343095
4 2011-04 277730
5 2011-05 367115
6 2011-06 356239
7 2011-07 361359
8 2011-08 385865
9 2011-09 536350

10 2011-10 568898
11 2011-11 666813
12 2011-12 203213

Months with Zero Quantity Sold:
Empty DataFrame
Columns: [Month, Quantity]
Index: []

Weekly Quantity Sold:
 DayOfWeek Quantity
0 Monday 739603.0
1 Tuesday 912081.0
2 Wednesday 938243.0
3 Thursday 1115666.0
4 Friday 729509.0
5 Saturday NaN
6 Sunday 457750.0

Weekdays with Zero Quantity Sold:
Empty DataFrame
Columns: [DayOfWeek, Quantity]
Index: []

Daily Quantity Sold:
 Date Quantity
0 2010-12-01 23931
1 2010-12-02 20790
2 2010-12-03 11507
3 2010-12-05 16186
4 2010-12-06 15919
..
300 2011-12-05 38224
301 2011-12-06 26641
302 2011-12-07 40903
303 2011-12-08 26837
304 2011-12-09 9523

[305 rows x 2 columns]

Days with Zero Quantity Sold:
Empty DataFrame
Columns: [Date, Quantity]
Index: []

import pandas as pd
from mlxtend.frequent_patterns import apriori, association_rules

Create the basket DataFrame
basket = (merged_data

 .groupby(['Invoice', 'Description'])['StockCode']
 .count()
 .unstack(fill_value=0)
 .reset_index()
 .set_index('Invoice'))

Convert counts to boolean values
basket = basket.apply(lambda x: (x > 0), axis=1)

Generate frequent itemsets
frequent_itemsets = apriori(basket, min_support=0.01,
use_colnames=True)

Generate association rules
rules = association_rules(frequent_itemsets, metric="lift",
min_threshold=1.0)

Filter rules based on confidence and lift
filtered_rules = rules[(rules['confidence'] > 0.7) & (rules['lift'] >
1.2)]

Display filtered rules
print(filtered_rules[['antecedents', 'consequents', 'support',
'confidence', 'lift']])

 antecedents \
29 (PAINTED METAL PEARS ASSORTED)
34 (BAKING SET SPACEBOY DESIGN)
38 (TOILET METAL SIGN)
40 (PINK HAPPY BIRTHDAY BUNTING)
41 (BLUE HAPPY BIRTHDAY BUNTING)
44 (CANDLEHOLDER PINK HANGING HEART)
74 (GARDENERS KNEELING PAD CUP OF TEA)
80 (PINK REGENCY TEACUP AND SAUCER)
85 (GREEN REGENCY TEACUP AND SAUCER)
329 (PINK REGENCY TEACUP AND SAUCER)
336 (POPPY'S PLAYHOUSE KITCHEN)
337 (POPPY'S PLAYHOUSE BEDROOM)
356 (REGENCY TEA PLATE GREEN)
368 (SET/6 RED SPOTTY PAPER PLATES)
370 (SET/6 RED SPOTTY PAPER PLATES)
371 (SET/6 RED SPOTTY PAPER CUPS)
373 (SMALL MARSHMALLOWS PINK BOWL)
383 (WOODEN STAR CHRISTMAS SCANDINAVIAN)
384 (WOODEN TREE CHRISTMAS SCANDINAVIAN)
386 (ALARM CLOCK BAKELIKE PINK, ALARM CLOCK BAKELI...
392 (REGENCY CAKESTAND 3 TIER, PINK REGENCY TEACUP...
393 (REGENCY CAKESTAND 3 TIER, GREEN REGENCY TEACU...
398 (ROSES REGENCY TEACUP AND SAUCER , PINK REGENC...
399 (ROSES REGENCY TEACUP AND SAUCER , GREEN REGEN...

400 (PINK REGENCY TEACUP AND SAUCER, GREEN REGENCY...
404 (ROSES REGENCY TEACUP AND SAUCER , REGENCY CAK...
406 (REGENCY CAKESTAND 3 TIER, GREEN REGENCY TEACU...
412 (JUMBO BAG STRAWBERRY, JUMBO BAG PINK POLKADOT)
417 (JUMBO STORAGE BAG SUKI, JUMBO BAG PINK POLKADOT)
519 (LUNCH BAG PINK POLKADOT, LUNCH BAG SUKI DESIGN)
525 (LUNCH BAG WOODLAND, LUNCH BAG PINK POLKADOT)
543 (LUNCH BAG WOODLAND, LUNCH BAG SUKI DESIGN)
549 (REGENCY CAKESTAND 3 TIER, PINK REGENCY TEACUP...
554 (ROSES REGENCY TEACUP AND SAUCER , REGENCY CAK...
555 (ROSES REGENCY TEACUP AND SAUCER , REGENCY CAK...
557 (REGENCY CAKESTAND 3 TIER, PINK REGENCY TEACUP...
561 (REGENCY CAKESTAND 3 TIER, PINK REGENCY TEACUP...

 consequents support
confidence \
29 (ASSORTED COLOUR BIRD ORNAMENT) 0.011537
0.723164
34 (BAKING SET 9 PIECE RETROSPOT) 0.014060
0.710706
38 (BATHROOM METAL SIGN) 0.010230
0.739414
40 (BLUE HAPPY BIRTHDAY BUNTING) 0.011537
0.705234
41 (PINK HAPPY BIRTHDAY BUNTING) 0.011537
0.715084
44 (WHITE HANGING HEART T-LIGHT HOLDER) 0.011492
0.732759
74 (GARDENERS KNEELING PAD KEEP CALM) 0.021000
0.725857
80 (GREEN REGENCY TEACUP AND SAUCER) 0.021226
0.796954
85 (ROSES REGENCY TEACUP AND SAUCER) 0.025101
0.759891
329 (ROSES REGENCY TEACUP AND SAUCER) 0.020324
0.763113
336 (POPPY'S PLAYHOUSE BEDROOM) 0.011492
0.730659
337 (POPPY'S PLAYHOUSE KITCHEN) 0.011492
0.799373
356 (REGENCY TEA PLATE ROSES) 0.010455
0.843636
368 (SET/20 RED RETROSPOT PAPER NAPKINS) 0.010320
0.704615
370 (SET/6 RED SPOTTY PAPER CUPS) 0.010635
0.726154
371 (SET/6 RED SPOTTY PAPER PLATES) 0.010635
0.828070
373 (SMALL DOLLY MIX DESIGN ORANGE BOWL) 0.010185

0.782007
383 (WOODEN HEART CHRISTMAS SCANDINAVIAN) 0.014421
0.733945
384 (WOODEN STAR CHRISTMAS SCANDINAVIAN) 0.010230
0.819495
386 (ALARM CLOCK BAKELIKE RED) 0.012078
0.779070
392 (GREEN REGENCY TEACUP AND SAUCER) 0.012348
0.858934
393 (PINK REGENCY TEACUP AND SAUCER) 0.012348
0.715405
398 (GREEN REGENCY TEACUP AND SAUCER) 0.017891
0.880266
399 (PINK REGENCY TEACUP AND SAUCER) 0.017891
0.712747
400 (ROSES REGENCY TEACUP AND SAUCER) 0.017891
0.842887
404 (GREEN REGENCY TEACUP AND SAUCER) 0.014241
0.731481
406 (ROSES REGENCY TEACUP AND SAUCER) 0.014241
0.825065
412 (JUMBO BAG RED RETROSPOT) 0.010500
0.792517
417 (JUMBO BAG RED RETROSPOT) 0.010050
0.785211
519 (LUNCH BAG RED RETROSPOT) 0.011492
0.704420
525 (LUNCH BAG RED RETROSPOT) 0.010816
0.743034
543 (LUNCH BAG RED RETROSPOT) 0.010140
0.725806
549 (ROSES REGENCY TEACUP AND SAUCER) 0.012213
0.849530
554 (GREEN REGENCY TEACUP AND SAUCER) 0.010861
0.889299
555 (PINK REGENCY TEACUP AND SAUCER) 0.010861
0.762658
557 (ROSES REGENCY TEACUP AND SAUCER) 0.010861
0.879562
561 (ROSES REGENCY TEACUP AND SAUCER , GREEN REGEN... 0.010861
0.755486

 lift
29 11.586286
34 17.900760
38 42.287602
40 43.712698
41 43.712698
44 8.077453

74 20.999687
80 24.126079
85 20.169830
329 20.255366
336 50.825466
337 50.825466
356 55.059679
368 21.301656
370 56.538084
371 56.538084
373 47.935728
383 35.024169
384 41.707763
386 19.060152
392 26.002386
393 26.860965
398 26.648164
399 26.761172
400 22.372815
404 22.144030
406 21.899759
412 10.703562
417 10.604892
519 11.761533
525 12.406265
543 12.118619
549 22.549122
554 26.921613
555 28.635171
557 23.346270
561 30.097364

import pandas as pd
from mlxtend.frequent_patterns import apriori, association_rules

Assuming 'basket' is already prepared
print(frequent_itemsets.head())

Generate association rules
rules = association_rules(frequent_itemsets, metric="lift",
min_threshold=1.0)

Filter rules based on confidence and lift
filtered_rules = rules[(rules['confidence'] > 0.7) & (rules['lift'] >
1.2)]

Display filtered rules
print(filtered_rules[['antecedents', 'consequents', 'support',
'confidence', 'lift']])

 support itemsets
0 0.011221 (10 COLOUR SPACEBOY PEN)
1 0.012528 (12 PENCIL SMALL TUBE WOODLAND)
2 0.014015 (12 PENCILS SMALL TUBE RED RETROSPOT)
3 0.013249 (12 PENCILS SMALL TUBE SKULL)
4 0.010680 (12 PENCILS TALL TUBE RED RETROSPOT)
 antecedents \
29 (PAINTED METAL PEARS ASSORTED)
34 (BAKING SET SPACEBOY DESIGN)
38 (TOILET METAL SIGN)
40 (PINK HAPPY BIRTHDAY BUNTING)
41 (BLUE HAPPY BIRTHDAY BUNTING)
44 (CANDLEHOLDER PINK HANGING HEART)
74 (GARDENERS KNEELING PAD CUP OF TEA)
80 (PINK REGENCY TEACUP AND SAUCER)
85 (GREEN REGENCY TEACUP AND SAUCER)
329 (PINK REGENCY TEACUP AND SAUCER)
336 (POPPY'S PLAYHOUSE KITCHEN)
337 (POPPY'S PLAYHOUSE BEDROOM)
356 (REGENCY TEA PLATE GREEN)
368 (SET/6 RED SPOTTY PAPER PLATES)
370 (SET/6 RED SPOTTY PAPER PLATES)
371 (SET/6 RED SPOTTY PAPER CUPS)
373 (SMALL MARSHMALLOWS PINK BOWL)
383 (WOODEN STAR CHRISTMAS SCANDINAVIAN)
384 (WOODEN TREE CHRISTMAS SCANDINAVIAN)
386 (ALARM CLOCK BAKELIKE PINK, ALARM CLOCK BAKELI...
392 (REGENCY CAKESTAND 3 TIER, PINK REGENCY TEACUP...
393 (REGENCY CAKESTAND 3 TIER, GREEN REGENCY TEACU...
398 (ROSES REGENCY TEACUP AND SAUCER , PINK REGENC...
399 (ROSES REGENCY TEACUP AND SAUCER , GREEN REGEN...
400 (PINK REGENCY TEACUP AND SAUCER, GREEN REGENCY...
404 (ROSES REGENCY TEACUP AND SAUCER , REGENCY CAK...
406 (REGENCY CAKESTAND 3 TIER, GREEN REGENCY TEACU...
412 (JUMBO BAG STRAWBERRY, JUMBO BAG PINK POLKADOT)
417 (JUMBO STORAGE BAG SUKI, JUMBO BAG PINK POLKADOT)
519 (LUNCH BAG PINK POLKADOT, LUNCH BAG SUKI DESIGN)
525 (LUNCH BAG WOODLAND, LUNCH BAG PINK POLKADOT)
543 (LUNCH BAG WOODLAND, LUNCH BAG SUKI DESIGN)
549 (REGENCY CAKESTAND 3 TIER, PINK REGENCY TEACUP...
554 (ROSES REGENCY TEACUP AND SAUCER , REGENCY CAK...
555 (ROSES REGENCY TEACUP AND SAUCER , REGENCY CAK...
557 (REGENCY CAKESTAND 3 TIER, PINK REGENCY TEACUP...
561 (REGENCY CAKESTAND 3 TIER, PINK REGENCY TEACUP...

 consequents support
confidence \
29 (ASSORTED COLOUR BIRD ORNAMENT) 0.011537
0.723164
34 (BAKING SET 9 PIECE RETROSPOT) 0.014060

0.710706
38 (BATHROOM METAL SIGN) 0.010230
0.739414
40 (BLUE HAPPY BIRTHDAY BUNTING) 0.011537
0.705234
41 (PINK HAPPY BIRTHDAY BUNTING) 0.011537
0.715084
44 (WHITE HANGING HEART T-LIGHT HOLDER) 0.011492
0.732759
74 (GARDENERS KNEELING PAD KEEP CALM) 0.021000
0.725857
80 (GREEN REGENCY TEACUP AND SAUCER) 0.021226
0.796954
85 (ROSES REGENCY TEACUP AND SAUCER) 0.025101
0.759891
329 (ROSES REGENCY TEACUP AND SAUCER) 0.020324
0.763113
336 (POPPY'S PLAYHOUSE BEDROOM) 0.011492
0.730659
337 (POPPY'S PLAYHOUSE KITCHEN) 0.011492
0.799373
356 (REGENCY TEA PLATE ROSES) 0.010455
0.843636
368 (SET/20 RED RETROSPOT PAPER NAPKINS) 0.010320
0.704615
370 (SET/6 RED SPOTTY PAPER CUPS) 0.010635
0.726154
371 (SET/6 RED SPOTTY PAPER PLATES) 0.010635
0.828070
373 (SMALL DOLLY MIX DESIGN ORANGE BOWL) 0.010185
0.782007
383 (WOODEN HEART CHRISTMAS SCANDINAVIAN) 0.014421
0.733945
384 (WOODEN STAR CHRISTMAS SCANDINAVIAN) 0.010230
0.819495
386 (ALARM CLOCK BAKELIKE RED) 0.012078
0.779070
392 (GREEN REGENCY TEACUP AND SAUCER) 0.012348
0.858934
393 (PINK REGENCY TEACUP AND SAUCER) 0.012348
0.715405
398 (GREEN REGENCY TEACUP AND SAUCER) 0.017891
0.880266
399 (PINK REGENCY TEACUP AND SAUCER) 0.017891
0.712747
400 (ROSES REGENCY TEACUP AND SAUCER) 0.017891
0.842887
404 (GREEN REGENCY TEACUP AND SAUCER) 0.014241
0.731481
406 (ROSES REGENCY TEACUP AND SAUCER) 0.014241

0.825065
412 (JUMBO BAG RED RETROSPOT) 0.010500
0.792517
417 (JUMBO BAG RED RETROSPOT) 0.010050
0.785211
519 (LUNCH BAG RED RETROSPOT) 0.011492
0.704420
525 (LUNCH BAG RED RETROSPOT) 0.010816
0.743034
543 (LUNCH BAG RED RETROSPOT) 0.010140
0.725806
549 (ROSES REGENCY TEACUP AND SAUCER) 0.012213
0.849530
554 (GREEN REGENCY TEACUP AND SAUCER) 0.010861
0.889299
555 (PINK REGENCY TEACUP AND SAUCER) 0.010861
0.762658
557 (ROSES REGENCY TEACUP AND SAUCER) 0.010861
0.879562
561 (ROSES REGENCY TEACUP AND SAUCER , GREEN REGEN... 0.010861
0.755486

 lift
29 11.586286
34 17.900760
38 42.287602
40 43.712698
41 43.712698
44 8.077453
74 20.999687
80 24.126079
85 20.169830
329 20.255366
336 50.825466
337 50.825466
356 55.059679
368 21.301656
370 56.538084
371 56.538084
373 47.935728
383 35.024169
384 41.707763
386 19.060152
392 26.002386
393 26.860965
398 26.648164
399 26.761172
400 22.372815
404 22.144030
406 21.899759

412 10.703562
417 10.604892
519 11.761533
525 12.406265
543 12.118619
549 22.549122
554 26.921613
555 28.635171
557 23.346270
561 30.097364

Display the rules with support, confidence, and lift
rules['support'] = rules['support'].round(4)
rules['confidence'] = rules['confidence'].round(4)
rules['lift'] = rules['lift'].round(4)

Sort rules by lift
sorted_rules = rules.sort_values(by='lift', ascending=False)

Display the sorted rules
print(sorted_rules[['antecedents', 'consequents', 'support',
'confidence', 'lift']])

 antecedents \
370 (SET/6 RED SPOTTY PAPER PLATES)
371 (SET/6 RED SPOTTY PAPER CUPS)
356 (REGENCY TEA PLATE GREEN)
357 (REGENCY TEA PLATE ROSES)
336 (POPPY'S PLAYHOUSE KITCHEN)
.. ...
297 (WHITE HANGING HEART T-LIGHT HOLDER)
193 (WHITE HANGING HEART T-LIGHT HOLDER)
192 (JUMBO BAG RED RETROSPOT)
354 (REGENCY CAKESTAND 3 TIER)
355 (WHITE HANGING HEART T-LIGHT HOLDER)

 consequents support confidence
lift
370 (SET/6 RED SPOTTY PAPER CUPS) 0.0106 0.7262
56.5381
371 (SET/6 RED SPOTTY PAPER PLATES) 0.0106 0.8281
56.5381
356 (REGENCY TEA PLATE ROSES) 0.0105 0.8436
55.0597
357 (REGENCY TEA PLATE GREEN) 0.0105 0.6824
55.0597
336 (POPPY'S PLAYHOUSE BEDROOM) 0.0115 0.7307
50.8255
..
.

297 (LUNCH BAG RED RETROSPOT) 0.0102 0.1128
1.8828
193 (JUMBO BAG RED RETROSPOT) 0.0114 0.1262
1.7042
192 (WHITE HANGING HEART T-LIGHT HOLDER) 0.0114 0.1546
1.7042
354 (WHITE HANGING HEART T-LIGHT HOLDER) 0.0108 0.1269
1.3984
355 (REGENCY CAKESTAND 3 TIER) 0.0108 0.1187
1.3984

[568 rows x 5 columns]

Filter for strong association rules for bundling
bundles = sorted_rules[(sorted_rules['lift'] > 1.5) &
(sorted_rules['confidence'] > 0.5)]
print("Recommended Product Bundles:")
print(bundles[['antecedents', 'consequents', 'support', 'confidence',
'lift']])

Recommended Product Bundles:
 antecedents \
370 (SET/6 RED SPOTTY PAPER PLATES)
371 (SET/6 RED SPOTTY PAPER CUPS)
356 (REGENCY TEA PLATE GREEN)
357 (REGENCY TEA PLATE ROSES)
336 (POPPY'S PLAYHOUSE KITCHEN)
.. ...
394 (PINK REGENCY TEACUP AND SAUCER, GREEN REGENCY...
405 (ROSES REGENCY TEACUP AND SAUCER , GREEN REGEN...
327 (PINK REGENCY TEACUP AND SAUCER)
83 (GREEN REGENCY TEACUP AND SAUCER)
349 (ROSES REGENCY TEACUP AND SAUCER)

 consequents support confidence lift
370 (SET/6 RED SPOTTY PAPER CUPS) 0.0106 0.7262 56.5381
371 (SET/6 RED SPOTTY PAPER PLATES) 0.0106 0.8281 56.5381
356 (REGENCY TEA PLATE ROSES) 0.0105 0.8436 55.0597
357 (REGENCY TEA PLATE GREEN) 0.0105 0.6824 55.0597
336 (POPPY'S PLAYHOUSE BEDROOM) 0.0115 0.7307 50.8255
..
394 (REGENCY CAKESTAND 3 TIER) 0.0123 0.5817 6.8518
405 (REGENCY CAKESTAND 3 TIER) 0.0142 0.5673 6.6820
327 (REGENCY CAKESTAND 3 TIER) 0.0144 0.5398 6.3574
83 (REGENCY CAKESTAND 3 TIER) 0.0173 0.5225 6.1542
349 (REGENCY CAKESTAND 3 TIER) 0.0195 0.5167 6.0863

[170 rows x 5 columns]

Group 4
Project B :

In this analysis, we looked at customer behavior using data from an online store. Our
main goal was to find insights that could help improve marketing strategies and get customers
more engaged. We started by cleaning the data and creating some useful metrics, like how long
customers spend browsing and their total sales. We used K-Means clustering to group customers
based on their buying habits and we try to apply a Random Forest classifier to predict how likely
they were to make a purchase. We also used linear regression to estimate total sales based on the
number of items bought and customer IDs. Our analysis revealed important patterns, such as how
browsing time affects buying behavior. Overall, this study highlights how understanding
customer interactions can enhance marketing efforts and boost sales.

Data preprocessing is an important step in getting the Online Retail II dataset ready for
analysis. First, we loaded the dataset from an Excel file using the pandas library. After that, we
looked at the data to see how many rows and columns there were, what types of data were
included, and if there were any missing values. To deal with missing data, we removed any rows
without a Customer ID since that information is crucial for our analysis. For entries where the
Description was missing, we filled those with the label 'Unknown'. We also filtered out any
transactions with negative quantities or prices because they don't make sense. Finally, we
checked for and removed any duplicate rows to ensure that each transaction was unique. Feature
engineering was key to improving our dataset for analysis. We converted the InvoiceDate into a
datetime format so that we could pull out useful features like the day of the week and the hour
when transactions occurred. We also created a new feature called TimeOfDay, which categorized
the transactions into morning, afternoon, evening, and night based on the hour. This helps us
understand when customers are shopping the most. Additionally, we added a Revenue column by
multiplying the Quantity by the Price, which shows us how much money each transaction
brought in. Once all these steps were done, we visualized the data to look for patterns in sales
and revenue throughout the week, helping us make informed decisions about marketing and
operations.

In our project, we aimed to segment customers based on their browsing and purchasing
habits using K-Means clustering. We started by gathering and organizing our customer data.
First, we aggregated the data at the customer level, calculating key metrics like total revenue, the
number of transactions, and total quantity purchased. We also computed the recency, which
measures the number of days since the customer's last purchase. This step helped us create a
clearer picture of each customer's behavior. After that, we scaled the features using
StandardScaler, which ensured that all metrics had the same influence on the clustering process.
This is important because K-Means works by calculating distances between points, and we
wanted to make sure that larger numbers didn’t unfairly dominate the results. Next, we applied
the K-Means algorithm to our valued customer data. We chose to create four clusters, which
helps in identifying different types of customers based on their behaviors. The algorithm works
by first randomly selecting initial cluster centroids and then assigning each customer to the

nearest centroid. After assigning the customers, K-Means recalculates the centroids based on the
current group of points in each cluster and repeats this process until the centroids no longer
change significantly. Once the clustering was done, we analyzed the characteristics of each
group. For instance, we created personalized marketing messages for each segment based on
their purchasing habits. This way, we could tailor promotions to specific groups, like offering
discounts to less active customers to encourage them to return. Additionally, we examined the
best times to engage with these customers by analyzing when they were most active, ensuring
our communication efforts were optimized. Overall, this approach not only helped us understand
our customers better but also enabled us to improve our marketing strategies effectively.

In the next steps, we conducted an analysis of customer engagement and purchasing
behavior using various data visualization and machine learning techniques. We created bar plots
and histograms to explore the distribution of engagement counts and customer features like total
revenue and recency. The bar plot displayed engagement counts segmented by purchase hour and
customer clusters, helping us identify peak purchasing times and how different customer groups
interact with our products. The histogram for total revenue showed a right-skewed distribution,
indicating that most customers spent relatively low amounts, while a few spent significantly
more. For example, we noticed that many customers made purchases in lower revenue ranges,
but a small number of customers generated a substantial portion of the total revenue. For the
modeling part, I used a Random Forest classifier, an ensemble learning method that works well
for classification tasks. This algorithm builds multiple decision trees during training and predicts
the most common class for classification, which helps reduce overfitting and improves
performance. My model achieved an impressive accuracy of 1.00, meaning it correctly classified
all instances in the test set, which included 875 samples. The classification report showed perfect
precision, recall, and F1-scores of 1.00 for the "MadePurchase" class, indicating that the model
effectively identified customers who made purchases. Additionally, cross-validation scores
confirmed the model's reliability, achieving perfect results across all five folds. However, a major
limitation of this analysis was that the dataset only included transaction data, lacking customer
viewing data or information on abandoned carts. This meant I couldn’t determine what items
customers had in their carts or predict how likely they were to make a purchase based on their
browsing behavior. This limitation explains why all 4,372 instances were classified as '1' for the
"MadePurchase" target variable since the dataset consisted only of completed transactions. Given
these challenges, we decided to shift our focus to analyzing other aspects of customer behavior
that we could accurately evaluate with the available data.

Since I couldn't create a classification model to predict whether a customer's browsing
session would end in a purchase due to incorrect data, I decided to rethink how I could analyze
the data to still provide value for a retail store. Given the available data, which included
InvoiceNo, StockCode, Description, Quantity, InvoiceDate, and UnitPrice, I thought it would be
helpful for a retail owner to know the probability of a customer making a purchase based on their

browsing time. If I knew that customers who browse longer are more likely to buy something, I
could suggest ways to enhance their experience on the website.

I started by preprocessing the dataset, sorting it by Customer ID and InvoiceDate to
ensure the transactions were in chronological order. This allowed me to accurately calculate the
browsing durations between purchases. I calculated browsing time as the difference between
consecutive transactions for each customer and converted this duration into seconds. To handle
any missing values from the first transaction (which doesn’t have a previous transaction to
compare), I filled those NaN values with 0 seconds, creating a new column called
BrowsingTime, which was crucial for my analysis.

Next, I aggregated the average browsing time and average price for each item using the
mean. This created a DataFrame, item_browsing, that showed the relationship between how long
customers spent browsing and the prices of items. I visualized this analysis with a scatter plot,
which depicted average browsing time against average item prices, helping to identify any trends
between these variables.

After that, I focused on customer-level browsing metrics. I aggregated the total browsing
time for each customer to create the customer_browsing_time DataFrame, which I then merged
with customer_data. This merge introduced a new feature, TotalBrowsingTime, indicating how
much time each customer spent browsing before making purchases. For example, customer ID
12347 had a TotalBrowsingTime of over 31 million seconds, suggesting significant browsing
activity that could relate to their higher spending.

Continuing with the analysis, I added a feature for the average price per customer and
prepared the data for modeling. I dropped irrelevant columns and created a target variable,
MadePurchase, to indicate whether a purchase was made. I trained a Random Forest classifier to
predict this outcome based on customer features. The model performed extremely well,
achieving perfect precision, recall, and F1-score of 1.00 on the test dataset, indicating it
classified all transactions accurately. However, this perfect performance raised concerns about
potential overfitting or a lack of complexity in the dataset since all transactions were purchases.

I then categorized browsing time into three groups: 'Short', 'Medium', and 'Long', based
on specific time thresholds. This allowed for a more detailed analysis of customer behavior. The
browsing_counts showed that most sessions were classified as 'Short' (385,345 instances), while
only a small fraction were 'Long' (15,789 instances). I also calculated the average price by
browsing categories and total spending. The results showed that 'Long' browsing sessions had an
average price of about $8.73, while 'Short' sessions averaged $3.23, indicating that customers
who browse longer tend to look at higher-priced items. Interestingly, 'Short' browsing sessions
generated the highest revenue at over $7.72 million, despite their lower average prices, while
'Medium' sessions had a negative total spend, suggesting possible data anomalies that need
further investigation.

Lastly, I created dynamic offers based on browsing categories and checked the offer
distribution. The results confirmed that 'Free Shipping' was the most common offer, mainly given
to customers in the 'Short' browsing category. I also explored daily transaction patterns by
extracting the day from InvoiceDate and aggregating customer transactions per day. A scatter
plot of total browsing time against transactions per day showed a weak positive correlation of
about 0.076, indicating that more browsing time didn’t necessarily lead to more daily
transactions. To dig deeper, I created a binary target variable for customers with more than three
transactions per day. The subsequent classification model revealed an accuracy of around 73.5%.
Overall, these analyses provide valuable insights into customer behavior and spending patterns,
highlighting potential marketing strategies based on browsing behavior.

For linear regression, we created a new column called TotalSales in the merged_data DataFrame.
This column calculates total sales by multiplying the number of items sold by their price. We
also changed the BrowsingTime column to a datetime format and made a new column called
BrowsingDate to only include the date. By grouping the data, we found the total sales, total
quantity sold, and number of transactions for each customer on a daily basis. This resulted in a
new DataFrame called sales_data, which gives us a clear picture of each customer's sales
performance day by day. After that, we set up a linear regression model to predict TotalSales
based on TotalQuantity and Customer ID. We split the data into training and testing sets, using
80% for training and 20% for testing. We trained the model on the training data and then made
predictions on the test set. We evaluated the model's performance using Mean Squared Error
(MSE), which measures how close the predicted sales are to the actual sales. The model had a
Mean Squared Error of about 53,130,896, indicating the average squared difference between
actual and predicted sales. The R² score was 0.24, meaning the model explains about 24% of the
variance in sales data, which shows there’s still room for improvement. The results weren’t great,
likely because the data we used, especially BrowsingTime and Customer ID, didn’t have a strong
connection to TotalSales. Ideally, we would want a different dataset that shows stronger
relationships. Still, this exercise helped us practice various analyses and improve our skills in
working with data.]

When we looked at seasonal discount timing, we wanted to identify periods of low sales
to suggest discounts or exclusive deals during off-peak hours. Our monthly sales figures showed
that February 2011 had the lowest quantity sold at 262,243 units, while January 2011 followed
closely with 268,755 units. Although there were no months with zero sales, these lower numbers
suggest that these months are less popular for sales compared to others, especially when looking
at peak sales in later months like October and November 2011. In our weekly sales analysis,
Saturday stood out as the least utilized day, showing a recorded quantity of NaN (Not a Number),
meaning there was no sales data available for Saturdays. This indicates that Saturdays might
either have very few sales or are not recorded properly. On the other hand, weekdays like
Monday, Tuesday, and Thursday show higher sales volumes, suggesting that customers prefer to
shop during the week. In summary, February 2011 is the month with the least sales activity, and

Saturday is identified as the day with potentially zero or very minimal sales. This information
can help us plan marketing strategies and discount timings to improve sales during these
underperforming times. By offering discounts during these slower periods, especially on
weekends, retailers can boost sales. Understanding these trends allows retailers to optimize their
marketing strategies and manage their inventory more effectively, ultimately leading to better
overall sales performance.

In my analysis of customer purchase behavior, I used the Apriori algorithm and
association rule mining to find patterns in the buying data. I started by creating a basket
DataFrame that organized the transaction data by invoice and product description. I converted
the counts into boolean values to show whether products were included in each basket. This
transformation helped us identify frequent itemsets, from which we derived association rules
based on metrics like support, confidence, and lift. The filtered rules showed strong connections
between different products, which can be useful for marketing strategies. For example, we found
that the Pink Regency Teacup and Saucer is often bought together with the Green Regency
Teacup and Saucer, as well as the Roses Regency Teacup and Saucer. Additionally, the Set of
Red Spotty Paper Plates is frequently linked to the Set of Red Spotty Paper Cups. These insights
can help businesses boost sales and create better discounts for customers who abandon their
carts. Even though we didn't have specific data on what items were in customers' carts, we can
still use this information. For example, when someone adds an item to their cart, the system
could suggest other products that people usually buy together. This would not only improve the
shopping experience but also encourage customers to buy more items. By using these strategies,
businesses can increase their sales and engage customers more effectively.

Some more examples of promotions:

Customers who bought the Painted Metal Pears Assorted also bought the Assorted Colour Bird
Ornament.

Customers who bought the Baking Set Spaceboy Design also bought the Baking Set 9 Piece
Retrosport.

Customers who bought the Toilet Metal Sign also bought the Bathroom Metal Sign.

Customers who bought the Happy Birthday Bunting (Pink) also bought the Happy Birthday
Bunting (Blue).

Customers who bought the Candleholder Pink Hanging Heart also bought the White Hanging
Heart T-Light Holder.

Customers who bought the Gardener's Kneeling Pad also bought the Gardener's Kneeling Pad
Keep Calm.

Customers who bought the Pink Regency Teacup and Saucer also bought the Green Regency
Teacup and Saucer.

In conclusion, analyzing customer behavior using data from an online store has given us some
really valuable insights that can help shape marketing strategies and boost customer engagement.
By carefully cleaning the data and using techniques like K-Means clustering and Random Forest
classification, we were able to identify different customer segments and predict their buying
behavior effectively. Our findings show that how long customers browse is a key factor in their
purchasing decisions.

It was a bit disappointing that the data we received wasn’t what we expected—it mainly focused
on transactions and didn’t include the customer interaction details we needed. This limited our
ability to understand what influences customers when they decide to buy something. Still, this
exercise turned out to be beneficial as it pushed us to explore different data analysis methods and
think creatively about the kinds of data that could be useful for retailers.

By using data visualization, we were able to see trends in customer engagement, like when
people are most likely to make purchases and how much they usually spend based on how long
they browse. These insights can help retailers improve their marketing strategies, especially by
offering targeted discounts during slower times. Plus, our exploration of association rules
showed us how different products are connected, which can create great opportunities for
cross-selling and promotional strategies. For example, figuring out which items are often bought
together can help businesses design effective marketing campaigns that make customers happier
and boost sales.

